
Parallelization of SINCO Algorithm

Aykut Bulut, Murat Mut

December 22, 2011

Abstract

Sparse inverse covariance selection problem is encountered in many prac-
tical applications. SINCO is an algorithm for the sparse inverse covariance
problem. The literature includes the computational experiments that explores
the computational capabilities of the algorithm and its comparison with the
glasso and COVSEL. SINCO is an algorithm that has parallelization poten-
tial. This study explores the gains from parallelization of SINCO.

Keywords: Sparse inverse covariance selection, glasso, COVSEL, paralleliza-
tion

1 Introduction

In many practical applications of statistical learning the objective is to discover
meaningful interactions among the variables. Some examples come from

• Gene networks.

• Discovery of functional brain connectivity patterns from brain-imaging data.

• Analysis of social interactions

1



1.1 Problem formulation and background

X = {X1, . . . , Xp} is a set of random variables, G = (V,E) is a Markov network
representing the conditional independence structure of the joint distribution P (X).

The set of vertices V = {1, . . . , p} corresponds to the set of variables. The
edge set contains (i, j) if and only if Xi is dependent on Xj given all the remaining
variables.

Assume a multivariate Gaussian pdf over X = {X1, . . . , Xp},

p(x) = (2π)−p/2 det(Σ)−1/2e−1/2(x−µ)T Σ−1(x−µ)

Zero entries in C = Σ−1 correspond to no edges in the graph. The goal is to find
a sparse maximum likelihood estimate of the inverse-covariance matrix C = Σ−1.

A common approach is to include as penalty the `1-norm of C yielding a convex
regularization of `0 norm measuring the sparsity. This yields p(C) = (λ/2)p

2
e−λ‖C‖1

where the objective is to find the maximum log-likelihood solution of

arg max
C�0

log p(C|X)

where X is an n× p matrix. After this change, the problem becomes

arg max
C�0

n

2
[log det(C)− tr(AC)]− ‖C‖S (1)

where A =
1

n

∑
i=1

xix
T
i and ‖C‖S denotes the sum of absolute values of the

elements of the matrix SC. Typically S = n
2
λ times all-one matrix and ‖C‖S

reduces to n
2
λ‖C‖1.

The dual formulation of problem 1

arg max
W�0

n

2
[log det(W )− np

2
] s.t.− S ≤ n

2
(W − A) ≤ S (2)

The optimality conditions for the above problems imply that

2



W = C−1

n
2
Wij − Aij = Sij forCij > 0

n
2
Wij − Aij = −Sij forCij < 0

(3)

For large(small) λ, we get sparse(dense) C.

Note that the problems above are (SDP) problems which can be solved by IPM’s
in polynomial time. However;

• Each iteration requires O(p6) operations.

• Sparsity of the solution is obtained only in the limit.

Alternative methods COVSEL and glasso apply a block coordinate descent
method where at each iteration one row(column) is updated.

• COVSEL solves the subproblems via IPM’s (second order cone quadratic)

• glasso solves the subproblems with an active-set algorithm.

1.2 SINCO and other algorithms

In this section, we compare SINCO and other methods and highlight their differ-
ences.

SINCO solves the primal problem directly with coordinate descent method. It
updates either one diagonal or two off-diagonal entries in C. The solution to each
subproblem is available in closed form as the root of a quadratic equation. In O(p2)
operations, a potential step is computed for all pairs (i, j). The step which provides
the best function value improvement is chosen.

On the other hand, glasso and COVSEL require solution of a quadratic program-
ming problem whose complexity always exceeds O(p2). Other methods updates a
whole row(column) which reduces the number of overall steps.

3



Another advantage of SINCO is that when initialized from a sparse(identity
matrix) solution, it generates one or two nonzero entries at each step. This leads
to less false-positive error. On the other hand, it might suffer from introducing too
few non-zeros and miss some of the true positives on denser networks.

The most important aspect of SINCO which is relevant for this project is that
each potential step in SINCO is computed for each (i, j) independently, and they
can be done in parallel.

1.3 Algorithm description

At each iteration, the matrix C is updated by changing one element: C + θ(eie
T
j +

eje
T
i ). Exact line search optimizing the objective function along the direction (eie

T
j +

eje
T
i ) reduces to a quadratic equation. Find the best function value improvement.

After the step is chosen, the dual matrix W = C−1 is updated in O(p2) operations
with Sherman-Morrison-Woodbury formula:

(X + abT )−1 = X−1 −X−1a(1 + bTX−1a)−1bTX−1 (4)

Formally the SINCO algorithm applies to the following formulation:

maxC′ ,C′′
n
2
[log det(C

′ − C ′′)− tr(A(C
′ − C ′′))]− tr(S(C

′
+ C

′′
))

s.t. C
′ ≥ 0, C

′′ ≥ 0, C
′ − C ′′ � 0

(5)

4



2 Parallel SINCO

In second step of SINCO the potential function improvement is calculated for each
(i, j) coordinate of the matrix. The function improvement can be calculated inde-
pendent for each (i, j). SINCO is parallelized using this step. In the parallelized
scheme, each process searches the maximum function improvement on part of the
matrix. When all of them found their potential maximum coordinate they compare
their results and continue with the coordinate which has the maximum potential
among their results. After step 2 the algorithm continues as usual.

Using the parallelized scheme a parallel SINCO is developed for both shared
memory and distributed memory architectures from the provided serial SINCO.
Computational experiments are conducted.

3 Computational Experiments

Computational experiments are conducted for different sizes of the problem. CORAL
machine polyps1 is used for the shared memory experiments. For the distributed

5



memory experiments CORAL machines in Table 1 are used.

Table 1: Machines used in the experiments

Name Memory CPU
carp 1000 Pentium IV 2.4GHz

dogfish 1000 Pentium IV 2.4GHz
eel 756 Pentium 4 2.0GHz (x2)

hobbes 756 Pentium 4 2.0GHz
parrotfish 756 Pentium 4 2.0GHz
snapper 756 Pentium 4 2.0GHz
squid 756 Pentium 4 2.0GHz

polyps1 — —

OpenMP is used for developing the parallel SINCO for distributed memory
architectures. OpenMPI is used for distributed memory architectures. Table 2
shows the results of the shared memory experiments.

Table 2: Results of shared memory experiments

p serial parallel Efficiency
thread time threads time

200 1 0m42.153s 7 0m31.457s 19%
400 1 4m28.599s 7 4m19.624s 15%
600 1 17m28.451s 7 14m32.374s 17%
800 1 36m26.841s 7 35m17.449s 15%
1200 1 128m12.952s 7 122m19.524s 15%

Experiments in the serial column is conducted by creating only one thread. The
experiments on the serial column are conducted by creating 7 threads. The time of
the execution of the algorithm is measured. The time measured is the wall clock
time. Using the time measurements efficiency of parallelization is calculated using
Equation 6.

E =
Tserial

threads× Tparallel
(6)

The execution time of the algorithm increases as the size of the problem increases
as expected. The efficiency of the parallelization is around 15% for the shared
memory architecture.

6



Table 3: Results of distributed memory experiments

p serial parallel Efficiency
execution time step 2 time ratio of step 2 time

200 0m43.012s 9 21% 1m7.801s 9%
400 6m15.220s 77 21% 6m16.458s 14%
600 20m59.761s 176 14% 19m22.528s 15%
800 32m38.807s 300 15% 39m16.490s 12%
1200 139m52.880s 1184 14% 128m39.680s 16%

Table 4: Distributed memory, Step 2 execution time

p serial parallel Efficiency
processor avg. time processor avg. time

200 snapper 0.00224 1-7 0.00028 114%
400 snapper 0.00960 1-7 0.00098 140%
600 snapper 0.01541 1-7 0.00246 89%
800 snapper 0.02203 1-7 0.00403 78%
1200 snapper 0.06160 1-7 0.00863 101%

Table 3 shows the results of the experiments on distributed memory architecture.

The serial SINCO is executed on CORAL machine snapper. The parallel SINCO
is executed on the machines given in the Table 1 (except polyps1). The execution
times of both versions are given in the table. The efficiency of parallelization is also
around 15% for distributed memory. In this table we have 2 extra columns. Step 2
time and its ratio to the all execution time. Step 2 time is the time of execution of
the parallelized section of the SINCO. We observe that the ratio of the parallelized
section the the all execution time is around 15%. This explains the efficiency of the
algorithm. Since the parallelized section of the serial algorithm is only the 15% of
the total execution time, there is an implied bound on the efficiency of the algorithm
which is 15%. This means that in terms of the step 2 parallelization is very efficient
and efficiency is close to linear (100%) efficiency.

Table 4 shows the average execution time of the Step 2 in serial and parallel
versions. Efficiency in terms of these execution times are calculated.

Efficiency column in Table 4 is as expected. This indicated that the efficiency
of the parallelization in the parallelized section of the algorithm is close to linear
efficiency.

7



4 Conclusion

There are two main conclusions of this study. The first is the fact that the execution
time of the search section of the current SINCO implementation is 15% of the total
execution time. The second is that the Step 2 of the SINCO is very prone to
parallelization and its parallelization efficiency is close to 100%. Using these two
conclusions one can estimate the execution time of the current parallel SINCO. It
can be estimated using Equation 7.

Tparallel =
Tserial

0.15× cluster size
(7)

Parallelization of the Step 4 of the algorithm can be thought as a future research
direction. In this step the inverse matrix is also updated for each (i, j) entry. Com-
plexity of this step is also O(p2) like Step 2. Assuming that it can be parallelized as
Step 2 and its ratio in the total execution time is also r4, then the execution time
of the new parallel algorithm can be estimated using Equation 8.

Tparallel =
Tserial

(0.15 + r4)× cluster size
(8)

References

[1] . Scheinberg and I. Rish, 2009, SINCO - a greedy coordinate ascent method for
sparse inverse covariance selection problem.

[2] . Scheinberg and S. Ma, 2010, Optimization methods for sparse inverse covari-
ance selection problem.

8


	Introduction
	Problem formulation and background
	SINCO and other algorithms
	Algorithm description

	Parallel SINCO
	Computational Experiments
	Conclusion

