
Simple Assembly Line Balancing Problem (SALBP),
Type 2

Aykut Bulut

May 18, 2012

Abstract

SALBP is an NP-hard problem. There are some measures proposed to grasp the
difficulty of SALBP. Order Strength, Flexibility Ratio and West Ratio all of which are
based on SALBP precedence networks are among them. This study investigates the
sensitivity of difficulty of SALBP type 2 to the three measures. A SALBP solver is
created in Python programming language. Computational experiments are conducted.

Keywords: Simple Assembly Line Balancing, Mathematical Model, SALBP Solver, Python

1 Introduction

SALBP rises in assembly systems. An assembly system consists of work stations where some
specific tasks are carried to produce a product. Work stations are linked together by a
trasportation system. Transportation system moves work in process from work station to
work station. Work stations together with transportation system is called assembly line.
First work station is fed by a manufacturing item and after a specific time interval workpiece
at each station is transfered to the next station. This time interval is called cycle time. Each
task has a process time. Each work station process tasks assigned to it within this cycle time.
At the end of each cycle a product comes out of the last station. Tasks can not be assigned
to stations arbitrarily. There are some technological constraints such that some tasks should
has precessed before some specific task set, i.e. tasks have some precedence relations. These
precedence relationships can be shown on a precedence network.

1



SALBP is the analytical modeling of this system under some assumptions. Assumptions
given by Baybars [1] can be restated as follows.

• All input parameters are known with certainty.

• A task can not be split between two or more work stations.

• Tasks should be processed according to their precedence relationships.

• All tasks must be processed.

• Any work station can process any task.

• Task process times are fixed, and independent of work station.

• Assembly line is assumed to be serial and transportation occurs instantly. Interaction
with transportation system is ignored.

• Assembly line is for a single unique product.

There are two types of SALBP, type 1 and type 2. When cycle time is fixed and objective is
to minimize number of workstations required to produce the item the problem is called type
1. When number of workstations is fixed and objective is to minimize cycle time, problem
is called SALBP type 2. Salveson [4] gave the first analytical statement of the SALBP and
showed that SALBP type 1 is equivalent to SALBP type 2 i.e. minimizing number of work
stations for a given cycle time is equivalent to minimizing cycle time for a given number
of workstations. In this work we will consider SALBP type 2. Hereafter SALBP refers to
SALBP type 2.

Many procedures (exact/heuristic) are proposed for solving SALBP. The following is a mixed-
binary program given by Baybars in [1] that solves SALBP. Define the following parameters
and variables.

Parameters
I: Number of tasks
J : Number of workstations
Pi: Set of predecessors of task i
ti: Task time

Variables
xij: Binary variable, 1 if task i assigned to station j.
T : Cycle time

2



Then mixed-binary program for solution of SALBP can be given as follows.

min T (1)

s.t.

J∑
j=1

xij = 1 ∀i ∈ {1, 2, . . . , I} (2)

T ≥
I∑

i=1

tixij ∀j ∈ {1, 2, . . . , J} (3)

xik ≤
k∑

j=1

xhj ∀i ∈ {1, 2, . . . , I},∀k ∈ {1, 2, . . . , J},∀h ∈ Pi (4)

xij = 0, 1 ∀i ∈ {1, 2, . . . , I},∀j ∈ {1, 2, . . . , J} (5)

(1) is the cycle time. (2) requires each task to be assigned to one workstation. (3) makes sure
that cycle time is at least as large as the process time of the work station with the highest
load. (4) ensures that all of the predecessors of task i is assigned to work stations either
before workstation of i or to the same work station. (5) forces xij to be binary.

Aim of this study is to investigate the following propositions.

• The structure of the precedence network in the SALBP affects the difficulty of the
problem as measured in resources (including time) required for solution.

• There is some measure that can quantify this difficulty apriori.

There are some studies that proposes measures for the difficulty of the problem apriori. Three
of them will be investigated in this study. The first one is ordering strength (OR), which is
proposed by Mastor, see [3]. The second one is flexibility ratio (FR) proposed by Dar-El,
see [2]. OS is the number of precedence relations divided by the total possible number of
precedence relations. Higher OS indicates more difficult problems. FR is the number of zero
entries in the precedence matrix divided by the number of entries in that matrix. Precedence
matrix is the matrix representation of the precedence network. FR is noted as the converse
of OS (1.0-OS).

The third measure that also measures the difficulty of the SALBP is West Ratio (WR)
proposed by Dar-El [2]. WR is the number of tasks per station in an optimal solution. Note

3



that for SALBP type 1 WR can only be obtained after the problem is solved. Since only
SALBP type 2 is the only concern in this study, WR is an apriori measure.

It is known that SALBP is NP-hard, [1]. This classification is for the worst case. In this
study we will investigate the sensitivity of the difficulty of SALBP instances to the measures
calculated from these instances. This investigation will lead us to an understanding about
how well the measures do. The following is the research plan.

• Create a platform that can efficiently create SALBP instances, analyze precedence
relations, analyze difficulty measures and solve the problem created.

• Conduct computational experiments using the tool created.

• Interpret results.

A SALBP solver is produced. Next section will introduce the solver produced. Section 3
explains the experimental parameters and gives the computational results. Finally Section 4
gives the deductions made from computational results.

2 SALBP Solver

Salbp is a Python class that is designed to create, analyze and solve SALBP. It uses different
tools to achieve all of this. These tools are PuLP v1.5.1, CBC v2.7, Graphviz v2.26.3 and
Pydot v1.0.28.

PuLP is an open-source linear programming (LP) modeler (continuous, integer, binary and
mixed) written in Python. It enables to build LP models within Python environment. Models
built in Python environment can be saved in MPS or LP format. PuLP can call different
solvers to solve the problems built. Salbp inherits PuLP’s LP problem class and extends it
to keep additional features of SALBP problem.

Among all the solvers available for PuLP, CBC (Coin-or Branch and Cut) is used in this
study. CBC is an open-source mixed integer programming solver written in C++. It can be
used as a callable library or using a stand-alone executable. In our case PuLP will call the
pre-compiled CBC executable to solve the model built.

PuLP and CBC are enough to built and solve the SALBP. Salbp class comes with additional
capabilities other than creating and solving SALBP. It can process the precedence network,

4



create graph of it and save it as a picture of the desired format. Salbp uses Graphviz and
Pydot to achieve this. Graphviz is an open-source graph visualization software. It has its
own language called Dot language. Salbp uses graphviz not with Dot language bu with using
Pydot, which is a Python interface for Graphviz’s Dot language. Pydot is also an open-source
software. Salbp uses Pydot and Graphviz to visualize the precedence relationships and save
it as a file.

User should define cycle time, number of work stations, task times and precedence relations
through Salbp’s interface. Salbp builds PuLP model from this information and solves with
a function call. The following is a small example of how to use Salbp.

from salbp import Salbp

if __name__ == ’__main__’:

p = Salbp()

p.assign_number_of_workstations(3)

p.assign_task_time(1,3.0)

p.assign_task_time(2,2.0)

p.assign_task_time(3,2.0)

p.assign_task_time(4,3.0)

p.assign_task_time(5,3.0)

p.assign_predecessor(2,1)

p.assign_predecessor(3,2)

p.assign_predecessor(4,2)

p.assign_predecessor(4,3)

p.assign_predecessor(5,4)

p.save_precedence_graph(’precedence_graph.png’, ’png’)

p.salbp_solve()

p.writeSALBP(’salbp.lp’)

This script first creates a SALBP instance named “p”. Then assigns cycle time as 7.0. Assigns
number of workstations as 3. Task time of the task 1, 2, 3, 4 and 5 are assigned as 3.0, 2.0,
2.0, 3.0 and 3.0 respectively. It assigns task 1 as a predecessor of task 2, 2 as a predecessor
of 3, and so on. Saves precedence network on a file called “precedence graph.png” in PNG
format and solves the problem. Writes the built model in LP format to file “salbp.lp”.

Figure 1 shows the “precedence graph.png” produced by the given script.

5



Figure 1: Precedence network for the given script

There is a SALBP library on web-site http://alb.mansci.de/. This site contains a collec-
tion of benchmark SALBP problems that are used by researchers. Salbp has a method to read
the input format of the problems obtained from this site. This provides downloaded test prob-
lems to be experimented easily. The following script reads test problem “MANSOOR.IN2”
and solves it. Test problems can be obtained from http://coral.ie.lehigh.edu/~aykut/software.

from salbp import Salbp

if __name__ == ’__main__’:

p = Salbp()

p.read_input(’./test_problems/MANSOOR.IN2’)

p.assign_number_of_workstations(10)

p.salbp_solve()

Salbp and its documentation can be obtained from http://coral.ie.lehigh.edu/~aykut/software.

6



3 Experiments

Computational experiments are conducted using the benchmark problems from the site men-
tioned. OR, FR and WR are calculated for the test problems. CPU time and number of
iterations that took to solve the problems are measured. Table 3 presents the results.

Problem optimal best found gap nodes iter. CPU time OS FR WR
BUXEY 34 34 - 100 15739 11.45 0.0887 0.9113 2.9
HAHN 1775 1775 - 34 9105 16 0.0595 0.9405 5.3
LUTZ1 1526 1526 - 464 32885 17.01 0.0766 0.9233 3.2

SAWYER30 34 34 - 1866 86325 23.98 0.0735 0.9264 3.0
GUNTHER 50 50 - 2384 100972 28.58 0.0756 0.9244 3.5
KILBRID 56 56 - 300 27344 33.42 0.0626 0.9374 4.5
TONGE70 352 352 0.00 361618 8553176 3602 0.0356 0.9644 7.0
ARC111 15040 15047 0.00 276522 6662970 3600 0.0288 0.9712 11.1

WARNECKE 155 156 0.01 297587 8159778 3600 0.0423 0.9577 5.8
WEE-MAG 150 151 0.01 348031 8532206 3601 0.0314 0.9686 7.5

MUKHERJE 424 424 0.01 84956 6427557 3600 0.0414 0.9586 9.4

Gap stands for the optimality gap in percentage and iter. stands for number of iterations.
Note that not all the problems are solved to optimality but some are stopped by an hour
time limit. Tonge, Arch111, Warnecke, Wee-Mag, Mukherje could not solved to optimality
in an hour. Figure 2 shows CPU time versus FR. It can be observed that CPU time increases
as FR increases. There is a big jump in CPU time. This is due to the hard problems that
can not solved less than in an hour. Figure 3 shows CPU time versus WR. Note that there
is an easy problem with 5.3 WR and a hard problem with 5.3. Even though WR difference
is relatively small there is a huge jump in CPU time.

7



Figure 2: CPU time vs FR

Figure 3: CPU time vs WR

All experiments are conducted on a machine with processor AMD Turion 64X2 Mobile Tech-
nology TL-50 (1.6 GHz, 2x 256 KB L2 cache) and 3.6 GiB memory running Ubuntu 12.04
as operating system.

8



4 Conclusion

Sensitivity of SALBP difficulty to precedence network is investigated in this study. Three
measures that estimates difficulty using precedence network is considered. A Python class is
created to conduct experiments.

Experimental results suggest that FR and WR predict the difficulty of the problems. Problem
is expected to increase as FR and WR increases. Measures are good to use for relative
comparison but may not always yield accurate results when interpretations depend on their
magnitude. This means that if one have two problems with different FR/WR we expect the
higher to be more difficult. If the ratio of the higher one is double of the lower one expecting
the problem difficulty to be double (in terms of CPU time) is not an accurate prediction.

This study includes only a subset of the benchmark problems. There are also other measure-
ments that predicts problem difficulty such as precedence index, task time index and project
index. Using Salbp solver this study can easily be extended to include other problems and
difficulty measures.

References

[1] İ. Baybars. A survey of exact algorithms for the simple assembly line balancing problem.
Management Science, 32(8):909–932, August 1986.

[2] E. M. Dar-El. Malb-a heuristic technique for balancing large single-model assembly lines.
AIIE Transactions, 5:343–356, 1973.

[3] A. A. Mastor. An experimental investigation and comparative evaluation of production
line balancing techniques. Management Science, 16:728–746, 1970.

[4] M. E. Salveson. The assembly line balancing problem. Journal of Industrial Engineering,
6:18–25, 1955.

9


