## An Algorithm for Solving Inverse Integer Programs

Aykut Bulut<sup>1</sup>

Joint work with: Ted Ralphs<sup>1</sup>

<sup>1</sup>COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

INFORMS Annual Meeting October 2012















Bulut, Ralphs (COR@L Lab)













Bulut, Ralphs (COR@L Lab)

An Algorithm for Solving Inverse IP





## 2 Complexity



















## Definitions

We consider an IP

$$z_{IP} = \min_{x \in \mathcal{P}} d^T x,\tag{1}$$

where  $d \in \mathbb{R}^n$  and

$$\mathcal{P} = \{x \in \mathbb{R}^n | Ax = b, x \ge 0\} \cap (\mathbb{Z}^r \times \mathbb{R}^{n-r}).$$

For a given  $c \in \mathbb{R}^n$ ,  $x^0 \in \mathcal{P}$ , the inverse problem is defined as follows.

$$\min \|c - d\|$$
s.t.
$$d^{T}x^{0} \leq d^{T}x \qquad \forall x \in \mathcal{P}.$$
(2)

Assumption:  $\mathcal{P}$  is bounded.

$$\min \|c - d\|$$
  
s.t.  
$$d^{T}x^{0} \le d^{T}x \qquad \forall x \in \mathcal{P}.$$

- Model can be linearized for  $l_1$  and  $l_{\infty}$  norms.
- Convex hull of  $\mathcal{P}$  is a polytope.
- Last constraint set can be represented with the set of extreme points of convex hull of  $\mathcal{P}$ .
- Let  $\mathcal{E}$  be the set of extreme points of convex hull of  $\mathcal{P}$ ,  $\mathcal{E}$  is finite.

(4)

## Inverse IP with $l_1$ norm

$$z_{IP}^{1} = \min \sum_{i=1}^{n} \theta_{i}$$
  
s.t.  
$$c_{i} - d_{i} \le \theta_{i}$$
  
$$d_{i} - c_{i} \le \theta_{i}$$
  
$$d^{T}x^{0} \le d^{T}x$$

$$\forall i \in \{1, 2, \dots, n\}$$
(3)  
$$\forall i \in \{1, 2, \dots, n\}$$
$$\forall x \in \mathcal{E}.$$



æ

-

## Inverse IP with $l_{\infty}$ norm

$$z_{IP}^{\infty} = \min y$$
s.t.
$$c_i - d_i \leq y \qquad \forall i \in \{1, 2, \dots, n\}$$

$$d_i - c_i \leq y \qquad \forall i \in \{1, 2, \dots, n\}$$

$$d^T x^0 \leq d^T x \qquad \forall x \in \mathcal{E}.$$
(4)

For the remainder of the presentation, we deal with the case of  $l_{\infty}$  norm. Let S represent feasible set of the inverse IP, defined as

$$\mathcal{S} = \left\{ (y, d) \in \mathbb{R} \times \mathbb{R}^n | y \ge \| c - d \|_{\infty}, d^T (x^0 - x) \le 0 \; \forall x \in \mathcal{E} \right\}.$$

Note that S is a polyhedron.

# Polynomially Solvable Forward Problems

Ahuja and Orlin [1] determines the complexity of inverse problem when the forward problem is polynomially solvable.

#### Theorem

(Ahuja and Orlin [1]) If a forward problem is polynomially solvable for each linear cost function, then corresponding inverse problems under  $l_1$  and  $l_{\infty}$  are polynomially solvable.



# Forward Problems

Define the following problems related to IP and inverse IP.

#### Definition

*IP decision problem:* Given  $\gamma \in \mathbb{Q}$  decide whether  $d^T x \leq \gamma$  holds for some  $x \in \mathcal{P}$ .

### Definition

*IP optimization problem:* Find solution vector  $x^*$  such that  $x^* \in \operatorname{argmin}_{x \in \mathcal{P}} d^T x$  or decide the problem is unbounded or decide the problem is infeasible.



### Definition

*Inverse IP decision problem:* Given  $\gamma \in \mathbb{Q}$  decide whether  $y \leq \gamma$  holds for some  $(y, d) \in S$ .

### Definition

*Inverse IP optimization problem:* Find solution vector  $(y^*, d^*)$ , such that  $(y^*, d^*) \in \operatorname{argmin}_{(y,d) \in S} y$ .

### Definition

*Inverse IP separation problem:* Given a vector  $(\bar{y}, \bar{d}) \in \mathbb{Q} \times \mathbb{Q}^n$ , decide whether  $(\bar{y}, \bar{d})$  is in S, and if not, find a hyperplane that separates  $(\bar{y}, \bar{d})$  from S, i.e., find  $\pi \in \mathbb{Q}^{n+1}$  such that  $\pi^T \begin{bmatrix} \bar{y} \\ \bar{d} \end{bmatrix} < \min \left\{ \pi^T \begin{bmatrix} y \\ d \end{bmatrix} | (y, d) \in S \right\}$ .

'н 🕁 🗹

Recall inverse IP optimization problem.

$$z_{IP}^{\infty} = \min y$$
  
s.t.  
$$c_i - d_i \le y \qquad \forall i \in \{1, 2, \dots, n\}$$
  
$$d_i - c_i \le y \qquad \forall i \in \{1, 2, \dots, n\}$$
  
$$d^T x^0 \le d^T x \qquad \forall x \in \mathcal{E}.$$

### Definition

*Inverse IP separation problem:* Given a vector  $(\bar{y}, \bar{d}) \in \mathbb{Q} \times \mathbb{Q}^n$ , decide whether  $(\bar{y}, \bar{d})$  is in S, and if not, find a hyperplane that separates  $(\bar{y}, \bar{d})$  from S, i.e., find  $\pi \in \mathbb{Q}^{n+1}$  such that  $\pi^T \begin{bmatrix} \bar{y} \\ \bar{d} \end{bmatrix} < \min \left\{ \pi^T \begin{bmatrix} y \\ d \end{bmatrix} | (y, d) \in S \right\}$ .

ቤ 🐨 🤨

The following theorem by Grötschel et al. indicates the relationship between separation and optimization problems.

#### Theorem

(Grötschel et al. [2]) Given an oracle for the separation problem, the optimization problem over a given polyhedron with linear objective can be solved in time, polynomial in  $\varphi$ , n and the encoding length of objective coefficient vector, where facet complexity of polyhedron is at most  $\varphi$ .



# Complexity of IP optimization/decision problems

#### Figure: Problem relations



#### Theorem

Inverse IP optimization problem under  $l_{\infty}/l_1$  norm is solvable in time polynomial of  $\varphi$ , n + 1/2n, and encoding length of  $(1, 0, \ldots, 0)/(1, \ldots, 1, 0, \ldots, 0)$ , given an oracle for the IP decision problem.

#### Corollary

Inverse IP decision problem is in  $\Delta_2^{\mathsf{P}}$ .

# Proposed Algorithm

First, we define two parametric problems named  $P_k$  and  $InvP_k$  as follows

$$\min_{x \in \mathcal{P}} d^{kT} x \tag{P_k}$$

$$\begin{array}{ll} \min y \\ s.t. \\ c_i - d_i \leq y \\ d_i - c_i \leq y \\ d^T x^0 \leq d^T x \end{array} \qquad \forall i \in \{1, 2, \ldots, n\} \\ \forall i \in \{1, 2, \ldots, n\} \\ \forall \mathcal{E}^{k-1} \end{array}$$

where  $\mathcal{E}^{k-1}$  is the set of extreme points found so far.

### Algorithm 1

 $k \leftarrow 1$   $d^{k} \leftarrow c$ Solve  $P_{k}, x^{k} \leftarrow x^{*}$ while  $d^{kT}(x^{0} - x^{k}) > 0$  do  $k \leftarrow k + 1$ Solve  $InvP_{k}, d^{k} \leftarrow d^{*}$ Solve  $P_{k}, x^{k} \leftarrow x^{*}$ end while

- $x^k$  is an optimal solution to  $P_k$ , whereas  $d^k$  is an optimal solution to  $invP_k$ .
- The algorithm stops when a generated cut is not violated by the current solution.

- We used MIPLIB3 benchmark problems to create our inverse problems.
- We perturbed objective function coefficients, solved the problems and used the resulting solutions as *x*<sup>0</sup>'s.
- Using generated  $x^0$ 's we created inverse IP problems.
- Experiments are conducted using COIN-OR Branch and Cut (Coin-Cbc) and COIN-OR Open Solver Interface (Coin-Osi) tools with Condor on a cluster running Debian operating system.

| Problem name | Iter. | $\ c - d^*\ _{\infty}$ | $\ c\ _{\infty}$ | Time       |
|--------------|-------|------------------------|------------------|------------|
| air03        | 1     | 0                      | 13746            | 05:05:24   |
| bell3a       | 4     | 4.49554                | 60000            | 00:09:17   |
| blend2       | 9     | 0.00508924             | 24.0142          | 00:05:00   |
| cap6000      | 2     | 13.9                   | 91110            | 01:40:01   |
| demulti      | 867   | 7                      | 1800             | 00:25:38   |
| egout        | 7     | 1.38485                | 43.71            | 00:09:10   |
| fiber        | 2     | 27.7829                | 729670           | 08:21:59   |
| gesa3        | 1     | 0                      | 1548890          | 00:00:37   |
| gt2          | 1     | 0                      | 7797             | 00:00:05   |
| khb05250     | 6     | 0.75                   | 2500000          | 00:01:05   |
| 1152lav      | 5     | 3.28571                | 268              | 00:02:02   |
| lseu         | 1     | 0                      | 517              | 00:00:17   |
| mas74        | 1     | 0                      | 1                | 02:28:05   |
| misc03       | 1     | 0                      | 1                | 00:00:02   |
| misc06       | 1163  | 0.410302               | 1                | 01:01:38   |
| mod008       | 2     | 4.625                  | 87               | 00:00:11   |
| mod010       | 4     | 3.78947                | 266              | 00:03:31   |
| noswot       | 4     | 1                      | 1                | 1-09:33:20 |
| p0201        | 1     | 0                      | 9600             | 00:00:00   |
| p0282        | 1     | 0                      | 160646           | 00:00:00   |
| pk1          | 11    | 0.138533               | 1                | 01:16:51   |
| pp08aCUTS    | 2380  | 4.69136                | 500              | 08:42:09   |
| qiu          | 20    | 16.947                 | 114.034          | 00:08:11   |
| qnet1        | 6     | 0.41136                | 1                | 00:01:59   |
| rgn          | 3     | 1                      | 3                | 00:00:00   |
| rout         | 10    | 0.555358               | 1                | 06:52:02   |
| stein27      | 1     | 0                      | 1                | 00:00:00   |
| vpm1         | 4     | 0.111111               | 1                | 1-02:55:03 |

#### Table: Computational results– $l_{\infty}$



INFORMS, October 2012 16

イロト イポト イヨト イヨト

ኽዮ 👦

2

## References

- Ravindra K. Ahuja and James B. Orlin. Inverse optimization.

Operations Research, 49(5):771–783, September/October 2001.

Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. *Geometric Algorithms and Combinatorial Optimization*, volume 2 of *Algorithms and Combinatorics*. Springer, second corrected edition edition, 1993.



This is end of presentation!

Thank you for listening!



# A Small Example:

Define forward problem as follows and let  $x^0 = (2, 1)$ .

 $\min 2x_1 + x_2$ s.t.  $2x_1 + 3x_2 \ge 1$  $-x_1 + 2x_2 \le 3$  $5x_1 + 5x_2 \le 16$  $2x_1 - 4x_2 \le 3$  $x_1, x_2 \ge 0$  $x_1, x_2 \text{ integer}$ 



Bulut, Ralphs (COR@L Lab)

∃ ► < ∃ ►</p>

# A Small Example:

k,  $d^k$  and  $x^k$  values through iterations are given in Table 2.

Table:  $k, d^k$  and  $x^k$  values through iterations

|                | k | $d^k$   | $x^k$  |
|----------------|---|---------|--------|
| initialization | 1 | (2,1)   | (0,1)  |
| iteration 1    | 2 | (0, 3)  | (1, 0) |
| iteration 2    | 3 | (0, -1) | (1, 2) |
| iteration 3    | 4 | (0,0)   | (0, 1) |

Inverse IP optimal value is  $y^* = ||c - d^4||_{\infty} = 2$ . Inverse IP optimal solution is  $d^4 = (0, 0)$ .

| Problem name | Iter. | $  c - d^*  _1$ | $\ c\ _{1}$ | Time |
|--------------|-------|-----------------|-------------|------|
| bell3a       | 1     | 26.7727         | 1.78994e+06 |      |
| cap6000      | 2     | 19              | 1.29696e+07 |      |
| demulti      | 1652  | 193.312         | 30648.9     |      |
| egout        | 34    | 28.472          | 793.391     |      |
| enigma       | 1     | 0               | 45          |      |
| fiber        | 1     | 3.28735         | 4.80778e+07 |      |
| flugpl       | 1     | 0               | 25380       |      |
| gesa2        | 1     | 0               | 9.09347e+07 |      |
| gesa3        | 1     | 0               | 8.73813e+07 |      |
| gt2          | 1     | 0               | 291998      |      |
| khb05250     | 3     | 8               | 6.5264e+07  |      |
| 1152lav      | 21    | 85              | 382524      |      |
| lseu         | 1     | 0               | 15494       |      |
| mas74        | 1     | 0               | 1.0015      |      |
| misc03       | 1     | 0               | 1           |      |
| misc06       | 10    | 1               | 1           |      |
| mod008       | 6     | 23              | 23554       |      |
| mod010       | 60    | 101             | 489211      |      |
| p0201        | 1     | 50              | 99900       |      |
| p0282        | 1     | 0               | 1.30262e+06 |      |
| pk1          | 1     | 1               | 1           |      |
| qnet1        | 25    | 2.07111         | 124         |      |
| rgn          | 53    | 20              | 160         |      |
| rout         | 7     | 1               | 1           |      |
| stein27      | 1     | 0               | 27          |      |

#### Table: Computational results– $l_1$

イロト イポト イヨト イヨト

