An Algorithm for Solving Inverse Integer Programs

Aykut Bulut ${ }^{1}$

Joint work with:
Ted Ralphs ${ }^{1}$
${ }^{1}$ COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University
INFORMS Annual Meeting
October 2012

Outline

(1) Inverse IP

Outline

(1) Inverse IP

(2) Complexity

(3) Algorithm

4 Computational Results

Outline

(1) Inverse IP

(2) Complexity

(3) Algorithm

4 Computational Results

Outline

(1) Inverse IP

(2) Complexity

(3) Algorithm

(4) Computational Results

Definitions

We consider an IP

$$
\begin{equation*}
z_{I P}=\min _{x \in \mathcal{P}} d^{T} x \tag{1}
\end{equation*}
$$

where $d \in \mathbb{R}^{n}$ and

$$
\mathcal{P}=\left\{x \in \mathbb{R}^{n} \mid A x=b, x \geq 0\right\} \cap\left(\mathbb{Z}^{r} \times \mathbb{R}^{n-r}\right) .
$$

For a given $c \in \mathbb{R}^{n}, x^{0} \in \mathcal{P}$, the inverse problem is defined as follows.

$$
\begin{aligned}
& \min \|c-d\| \\
& \text { s.t. } \\
& d^{T} x^{0} \leq d^{T} x \quad \forall x \in \mathcal{P} .
\end{aligned}
$$

Assumption: \mathcal{P} is bounded.

Definitions

$$
\begin{align*}
& \min \|c-d\| \\
& \text { s.t. } \tag{4}\\
& d^{T} x^{0} \leq d^{T} x \quad \forall x \in \mathcal{P} .
\end{align*}
$$

- Model can be linearized for l_{1} and l_{∞} norms.
- Convex hull of \mathcal{P} is a polytope.
- Last constraint set can be represented with the set of extreme points of convex hull of \mathcal{P}.
- Let \mathcal{E} be the set of extreme points of convex hull of \mathcal{P}, \mathcal{E} is finite.

Inverse IP with l_{1} norm

$$
\begin{array}{lr}
z_{I P}^{1}=\min \sum_{i=1}^{n} \theta_{i} & \\
\text { s.t. } & \\
c_{i}-d_{i} \leq \theta_{i} & \forall i \in\{1,2, \ldots, n\} \tag{3}\\
d_{i}-c_{i} \leq \theta_{i} & \forall i \in\{1,2, \ldots, n\} \\
d^{T} x^{0} \leq d^{T} x & \forall x \in \mathcal{E} .
\end{array}
$$

Inverse IP with l_{∞} norm

$$
\begin{array}{lr}
z_{I P}^{\infty}=\min y & \\
\text { s.t. } & \\
c_{i}-d_{i} \leq y & \forall i \in\{1,2, \ldots, n\} \tag{4}\\
d_{i}-c_{i} \leq y & \forall i \in\{1,2, \ldots, n\} \\
d^{T} x^{0} \leq d^{T} x & \forall x \in \mathcal{E} .
\end{array}
$$

For the remainder of the presentation, we deal with the case of l_{∞} norm. Let \mathcal{S} represent feasible set of the inverse IP, defined as

$$
\mathcal{S}=\left\{(y, d) \in \mathbb{R} \times \mathbb{R}^{n} \mid y \geq\|c-d\|_{\infty}, d^{T}\left(x^{0}-x\right) \leq 0 \forall x \in \mathcal{E}\right\}
$$

Note that \mathcal{S} is a polyhedron.

Polynomially Solvable Forward Problems

Ahuja and Orlin [1] determines the complexity of inverse problem when the forward problem is polynomially solvable.

Theorem

(Ahuja and Orlin [1]) If a forward problem is polynomially solvable for each linear cost function, then corresponding inverse problems under l_{1} and l_{∞} are polynomially solvable.

Forward Problems

Define the following problems related to IP and inverse IP.

Definition

IP decision problem: Given $\gamma \in \mathbb{Q}$ decide whether $d^{T} x \leq \gamma$ holds for some $x \in \mathcal{P}$.

Definition

IP optimization problem: Find solution vector x^{*} such that $x^{*} \in \operatorname{argmin}_{x \in \mathcal{P}} d^{T} x$ or decide the problem is unbounded or decide the problem is infeasible.

Inverse Problems

Definition

Inverse IP decision problem: Given $\gamma \in \mathbb{Q}$ decide whether $y \leq \gamma$ holds for some $(y, d) \in \mathcal{S}$.

Definition

Inverse IP optimization problem: Find solution vector $\left(y^{*}, d^{*}\right)$, such that $\left(y^{*}, d^{*}\right) \in \operatorname{argmin}_{(y, d) \in \mathcal{S}} y$.

Definition

Inverse IP separation problem: Given a vector $(\bar{y}, \bar{d}) \in \mathbb{Q} \times \mathbb{Q}^{n}$, decide whether (\bar{y}, \bar{d}) is in \mathcal{S}, and if not, find a hyperplane that separates (\bar{y}, \bar{d}) from \mathcal{S}, i.e., find $\pi \in \mathbb{Q}^{n+1}$ such that $\pi^{T}\left[\begin{array}{l}\bar{y} \\ \bar{d}\end{array}\right]<\min \left\{\left.\pi^{T}\left[\begin{array}{l}y \\ d\end{array}\right] \right\rvert\,(y, d) \in \mathcal{S}\right\}$.

Component 1-An Observation

Recall inverse IP optimization problem.

$$
\begin{array}{lr}
z_{I P}^{\infty}=\min y & \\
\text { s.t. } & \\
c_{i}-d_{i} \leq y & \forall i \in\{1,2, \ldots, n\} \\
d_{i}-c_{i} \leq y & \forall i \in\{1,2, \ldots, n\} \\
d^{T} x^{0} \leq d^{T} x & \forall x \in \mathcal{E} .
\end{array}
$$

Definition

Inverse IP separation problem: Given a vector $(\bar{y}, \bar{d}) \in \mathbb{Q} \times \mathbb{Q}^{n}$, decide whether (\bar{y}, \bar{d}) is in \mathcal{S}, and if not, find a hyperplane that separates (\bar{y}, \bar{d}) from \mathcal{S}, i.e., find $\pi \in \mathbb{Q}^{n+1}$ such that $\pi^{T}\left[\begin{array}{l}\bar{y} \\ \bar{d}\end{array}\right]<\min \left\{\left.\pi^{T}\left[\begin{array}{l}y \\ d\end{array}\right] \right\rvert\,(y, d) \in \mathcal{S}\right\}$.

Component 2-GLS Theorem

The following theorem by Grötschel et al. indicates the relationship between separation and optimization problems.

Theorem

(Grötschel et al. [2]) Given an oracle for the separation problem, the optimization problem over a given polyhedron with linear objective can be solved in time, polynomial in φ, n and the encoding length of objective coefficient vector, where facet complexity of polyhedron is at most φ.

Complexity of IP optimization/decision problems

Figure: Problem relations

Theorem

Inverse IP optimization problem under l_{∞} / l_{1} norm is solvable in time polynomial of $\varphi, n+1 / 2 n$, and encoding length of
$(1,0, \ldots, 0) /(1, \ldots, 1,0, \ldots, 0)$, given an oracle for the IP decision problem.

Corollary

Inverse IP decision problem is in Δ_{2}^{P}.

Proposed Algorithm

First, we define two parametric problems named P_{k} and $\operatorname{Inv} P_{k}$ as follows

$$
\min _{x \in \mathcal{P}} d^{k T} x
$$

$\min y$

s.t.

$$
\begin{gathered}
c_{i}-d_{i} \leq y \\
d_{i}-c_{i} \leq y \\
d^{T} x^{0} \leq d^{T} x
\end{gathered}
$$

$$
\forall i \in\{1,2, \ldots, n\}
$$

$$
\left(\operatorname{Inv} P_{k}\right)
$$

where \mathcal{E}^{k-1} is the set of extreme points found so far.

Proposed Algorithm

Algorithm 1

$k \leftarrow 1$
$d^{k} \leftarrow c$
Solve $P_{k}, x^{k} \leftarrow x^{*}$
while $d^{k T}\left(x^{0}-x^{k}\right)>0$ do
$k \leftarrow k+1$
Solve $\operatorname{Inv} P_{k}, d^{k} \leftarrow d^{*}$
Solve $P_{k}, x^{k} \leftarrow x^{*}$
end while

- x^{k} is an optimal solution to P_{k}, whereas d^{k} is an optimal solution to $\operatorname{inv} P_{k}$.
- The algorithm stops when a generated cut is not violated by the current solution.

Computational Results

- We used MIPLIB3 benchmark problems to create our inverse problems.
- We perturbed objective function coefficients, solved the problems and used the resulting solutions as x^{0} 's.
- Using generated x^{0},s we created inverse IP problems.
- Experiments are conducted using COIN-OR Branch and Cut (Coin-Cbc) and COIN-OR Open Solver Interface (Coin-Osi) tools with Condor on a cluster running Debian operating system.

Table: Computational results $-l_{\infty}$

Problem name	Iter.	$\left\\|c-d^{*}\right\\|_{\infty}$	$\\|c\\|_{\infty}$	Time
air03	1	0	13746	$05: 05: 24$
bell3a	4	4.49554	60000	$00: 09: 17$
blend2	9	0.00508924	24.0142	$00: 05: 00$
cap6000	2	13.9	91110	$01: 40: 01$
dcmulti	867	7	1800	$00: 25: 38$
egout	7	1.38485	43.71	$00: 09: 10$
fiber	2	27.7829	729670	$08: 21: 59$
gesa3	1	0	1548890	$00: 00: 37$
gt2	1	0	7797	$00: 00: 05$
khb05250	6	0.75	2500000	$00: 01: 05$
l152lav	5	3.28571	268	$00: 02: 02$
lseu	1	0	517	$00: 00: 17$
mas74	1	0	1	$02: 28: 05$
misc03	1	0	1	$00: 00: 02$
misc06	1163	0.410302	1	$01: 01: 38$
mod008	2	4.625	87	$00: 00: 11$
mod010	4	3.78947	266	$00: 03: 31$
noswot	4	1	1	$1-09: 33: 20$
p0201	1	0	9600	$00: 00: 00$
p0282	1	0	160646	$00: 00: 00$
pk1	11	0.138533	1	$01: 16: 51$
pp08aCUTS	2380	4.69136	500	$08: 42: 09$
qiu	20	16.947	114.034	$00: 08: 11$
qnet1	6	0.41136	1	$00: 01: 59$
rgn	3	1	3	$00: 00: 00$
rout	10	0.555358	0	1
stein27	1	0	$0: 52: 02$	
vpm1	4	0.111111	1	$00: 00: 00$
			1	$1-02: 55: 03$

References

Ravindra K. Ahuja and James B. Orlin. Inverse optimization.
Operations Research, 49(5):771-783, September/October 2001.
圊 Martin Grötschel, Lászlo Lovász, and Alexander Schrijver.
Geometric Algorithms and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics.
Springer, second corrected edition edition, 1993.

End of presentation

This is end of presentation!

Thank you for listening!

A Small Example:

Define forward problem as follows and let $x^{0}=(2,1)$.

$$
\begin{aligned}
& \min 2 x_{1}+x_{2} \\
& \text { s.t. } \\
& 2 x_{1}+3 x_{2} \geq 1 \\
& -x_{1}+2 x_{2} \leq 3 \\
& 5 x_{1}+5 x_{2} \leq 16 \\
& 2 x_{1}-4 x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \text { integer }
\end{aligned}
$$

A Small Example:

k, d^{k} and x^{k} values through iterations are given in Table 2.

Table: k, d^{k} and x^{k} values through iterations

	k	d^{k}	x^{k}
initialization	1	$(2,1)$	$(0,1)$
iteration 1	2	$(0,3)$	$(1,0)$
iteration 2	3	$(0,-1)$	$(1,2)$
iteration 3	4	$(0,0)$	$(0,1)$

Inverse IP optimal value is $y^{*}=\left\|c-d^{4}\right\|_{\infty}=2$. Inverse IP optimal solution is $d^{4}=(0,0)$.

Table: Computational results $-l_{1}$

Problem name	Iter.	$\left\\|c-d^{*}\right\\|_{1}$	$\\|c\\|_{1}$	Time
bell3a	1	26.7727	$1.78994 \mathrm{e}+06$	
cap6000	2	19	$1.29696 \mathrm{e}+07$	
dcmulti	1652	193.312	30648.9	
egout	34	28.472	793.391	
enigma	1	0	45	
fiber	1	3.28735	$4.80778 \mathrm{e}+07$	
flugpl	1	0	25380	
gesa2	1	0	$9.09347 \mathrm{e}+07$	
gesa3	1	0	$8.73813 \mathrm{e}+07$	
gt2	1	0	291998	
khb05250	3	8	$6.5264 \mathrm{e}+07$	
l152lav	21	85	382524	
lseu	1	0	15494	
mas74	1	0	1.0015	1
misc03	1	0	1	
misc06	10	1	23554	
mod008	6	23	489211	
mod010	60	101	99900	
p0201	1	50	$1.30262 \mathrm{e}+06$	
p0282	1	0	1	
pk1	1	1	124	
qnet1	25	2.07111	1	
rgn	53	20	27	
rout	7	1		
stein27	1	0		
			1	

