
Computational Approaches to Mixed Integer Second
Order Cone Optimization (MISOCP)

Aykut Bulut1

Ted Ralphs2

1The MathWorks, Inc.
2 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

INFORMS Annual Meeting 2017,
23 October 2017

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 1 / 33

Outline

1 Algorithms for MISOCP

2 DisCO Solver

3 Computational Experiments

4 Conclusion

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 2 / 33

MISOCP Definition

We are interested in solving Mixed Integer Second Order Conic
Optimization (MISOCP) problems.

MISOCP is a generalization of Mixed Integer Linear Optimization
(MILP).

MISOCP can be formulated as follows,

min c>x

s.t. Ax = b

x ∈ L1 × · · · × Lk (MISOCP)

xi ∈ R+ i ∈ I

xj ∈ Z+ j ∈ J.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 3 / 33

Motivation: Evaluation of Solution Approaches for
MISOCP

Choice of branch and bound subproblem: LP vs SOCP?

What does an LP–based branch and cut for MISOCP look like?

How to balance cutting and branching for LP–based approach?

Do MILP cuts help in case of LP–based subproblems?

Do disjunctive conic cuts help?

Which branching strategy to use?

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 4 / 33

Motivation: Evaluation of Solution Approaches for
MISOCP

Choice of branch and bound subproblem: LP vs SOCP?

What does an LP–based branch and cut for MISOCP look like?

How to balance cutting and branching for LP–based approach?

Do MILP cuts help in case of LP–based subproblems?

Do disjunctive conic cuts help?

Which branching strategy to use?

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 4 / 33

Motivation: Evaluation of Solution Approaches for
MISOCP

Choice of branch and bound subproblem: LP vs SOCP?

What does an LP–based branch and cut for MISOCP look like?

How to balance cutting and branching for LP–based approach?

Do MILP cuts help in case of LP–based subproblems?

Do disjunctive conic cuts help?

Which branching strategy to use?

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 4 / 33

Motivation: Evaluation of Solution Approaches for
MISOCP

Choice of branch and bound subproblem: LP vs SOCP?

What does an LP–based branch and cut for MISOCP look like?

How to balance cutting and branching for LP–based approach?

Do MILP cuts help in case of LP–based subproblems?

Do disjunctive conic cuts help?

Which branching strategy to use?

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 4 / 33

Motivation: Evaluation of Solution Approaches for
MISOCP

Choice of branch and bound subproblem: LP vs SOCP?

What does an LP–based branch and cut for MISOCP look like?

How to balance cutting and branching for LP–based approach?

Do MILP cuts help in case of LP–based subproblems?

Do disjunctive conic cuts help?

Which branching strategy to use?

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 4 / 33

Motivation: Evaluation of Solution Approaches for
MISOCP

Choice of branch and bound subproblem: LP vs SOCP?

What does an LP–based branch and cut for MISOCP look like?

How to balance cutting and branching for LP–based approach?

Do MILP cuts help in case of LP–based subproblems?

Do disjunctive conic cuts help?

Which branching strategy to use?

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 4 / 33

Separating Infeasible Directions/Solutions

Figure: Separation Example

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 5 / 33

LP–based Branch And Cut

Algorithm 1 LP–based Branch and Cut Algorithm (bb-lp)
1: Solve SOCP.
2: Relax all integrality and conic constraints to create root node LP.
3: while there are nodes to process do
4: Pick a node.
5: Solve LP, if LP solution is feasible, update bounds and go to line 3.
6: Decide whether to constrain or branch.
7: while cutting is preferred do
8: Add cuts to the LP and solve.
9: Decide whether to constrain or branch.

10: end while
11: Branch, remove current node.
12: end while

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 6 / 33

LP–based Branch And Cut

Algorithm 1 LP–based Branch and Cut Algorithm (bb-lp)
1: Solve SOCP.
2: Relax all integrality and conic constraints to create root node LP.
3: while there are nodes to process do
4: Pick a node.
5: Solve LP, if LP solution is feasible, update bounds and go to line 3.
6: Decide whether to constrain or branch.
7: while cutting is preferred do
8: Add cuts to the LP and solve.
9: Decide whether to constrain or branch.

10: end while
11: Branch, remove current node.
12: end while

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 6 / 33

LP–based Branch And Cut

Algorithm 1 LP–based Branch and Cut Algorithm (bb-lp)
1: Solve SOCP.
2: Relax all integrality and conic constraints to create root node LP.
3: while there are nodes to process do
4: Pick a node.
5: Solve LP, if LP solution is feasible, update bounds and go to line 3.
6: Decide whether to constrain or branch.
7: while cutting is preferred do
8: Add cuts to the LP and solve.
9: Decide whether to constrain or branch.

10: end while
11: Branch, remove current node.
12: end while

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 6 / 33

LP–based Branch And Cut

Algorithm 1 LP–based Branch and Cut Algorithm (bb-lp)
1: Solve SOCP.
2: Relax all integrality and conic constraints to create root node LP.
3: while there are nodes to process do
4: Pick a node.
5: Solve LP, if LP solution is feasible, update bounds and go to line 3.
6: Decide whether to constrain or branch.
7: while cutting is preferred do
8: Add cuts to the LP and solve.
9: Decide whether to constrain or branch.

10: end while
11: Branch, remove current node.
12: end while

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 6 / 33

LP–based Branch And Cut

Algorithm 1 LP–based Branch and Cut Algorithm (bb-lp)
1: Solve SOCP.
2: Relax all integrality and conic constraints to create root node LP.
3: while there are nodes to process do
4: Pick a node.
5: Solve LP, if LP solution is feasible, update bounds and go to line 3.
6: Decide whether to constrain or branch.
7: while cutting is preferred do
8: Add cuts to the LP and solve.
9: Decide whether to constrain or branch.

10: end while
11: Branch, remove current node.
12: end while

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 6 / 33

LP–based Branch And Cut

Algorithm 1 LP–based Branch and Cut Algorithm (bb-lp)
1: Solve SOCP.
2: Relax all integrality and conic constraints to create root node LP.
3: while there are nodes to process do
4: Pick a node.
5: Solve LP, if LP solution is feasible, update bounds and go to line 3.
6: Decide whether to constrain or branch.
7: while cutting is preferred do
8: Add cuts to the LP and solve.
9: Decide whether to constrain or branch.

10: end while
11: Branch, remove current node.
12: end while

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 6 / 33

LP–based Branch And Cut

Algorithm 1 LP–based Branch and Cut Algorithm (bb-lp)
1: Solve SOCP.
2: Relax all integrality and conic constraints to create root node LP.
3: while there are nodes to process do
4: Pick a node.
5: Solve LP, if LP solution is feasible, update bounds and go to line 3.
6: Decide whether to constrain or branch.
7: while cutting is preferred do
8: Add cuts to the LP and solve.
9: Decide whether to constrain or branch.

10: end while
11: Branch, remove current node.
12: end while

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 6 / 33

LP–based Branch And Cut

Algorithm 1 LP–based Branch and Cut Algorithm (bb-lp)
1: Solve SOCP.
2: Relax all integrality and conic constraints to create root node LP.
3: while there are nodes to process do
4: Pick a node.
5: Solve LP, if LP solution is feasible, update bounds and go to line 3.
6: Decide whether to constrain or branch.
7: while cutting is preferred do
8: Add cuts to the LP and solve.
9: Decide whether to constrain or branch.

10: end while
11: Branch, remove current node.
12: end while

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 6 / 33

Whether to Cut or Branch

Let x be LP subproblem solution.
If x is conic infeasible,

Generate Outer Approximation (OA) cuts for at least α iterations.
Generate OA cuts for at most γ iterations if x is integer infeasible too.
After α iterations, generate OA cuts if last improvement in the LP bound
was greater than β times difference of LP bound to current upper bound.

If x is integer infeasible, and a fixed number of nodes passed since last,
generate MILP cuts.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 7 / 33

Whether to Cut or Branch

Let x be LP subproblem solution.
If x is conic infeasible,

Generate Outer Approximation (OA) cuts for at least α iterations.
Generate OA cuts for at most γ iterations if x is integer infeasible too.
After α iterations, generate OA cuts if last improvement in the LP bound
was greater than β times difference of LP bound to current upper bound.

If x is integer infeasible, and a fixed number of nodes passed since last,
generate MILP cuts.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 7 / 33

Whether to Cut or Branch

Let x be LP subproblem solution.
If x is conic infeasible,

Generate Outer Approximation (OA) cuts for at least α iterations.
Generate OA cuts for at most γ iterations if x is integer infeasible too.
After α iterations, generate OA cuts if last improvement in the LP bound
was greater than β times difference of LP bound to current upper bound.

If x is integer infeasible, and a fixed number of nodes passed since last,
generate MILP cuts.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 7 / 33

Whether to Cut or Branch

Let x be LP subproblem solution.
If x is conic infeasible,

Generate Outer Approximation (OA) cuts for at least α iterations.
Generate OA cuts for at most γ iterations if x is integer infeasible too.
After α iterations, generate OA cuts if last improvement in the LP bound
was greater than β times difference of LP bound to current upper bound.

If x is integer infeasible, and a fixed number of nodes passed since last,
generate MILP cuts.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 7 / 33

Whether to Cut or Branch

Let x be LP subproblem solution.
If x is conic infeasible,

Generate Outer Approximation (OA) cuts for at least α iterations.
Generate OA cuts for at most γ iterations if x is integer infeasible too.
After α iterations, generate OA cuts if last improvement in the LP bound
was greater than β times difference of LP bound to current upper bound.

If x is integer infeasible, and a fixed number of nodes passed since last,
generate MILP cuts.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 7 / 33

DisCO Solver

A branch and cut framework to solve MISOCP. Extends COIN-OR’s
High-Performance Parallel Search (CHiPPS) framework for conic
problems.

Uses conic OSI to manipulate SOCP subproblems.

Default behavior is LP–based branch and cut using CLP and conic CGL.

Cplex, Mosek and Ipopt can be used through conic OSI interface.

Reads problems in CBF and Mosek’s extended MPS format.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 8 / 33

DisCO Solver

A branch and cut framework to solve MISOCP. Extends COIN-OR’s
High-Performance Parallel Search (CHiPPS) framework for conic
problems.

Uses conic OSI to manipulate SOCP subproblems.

Default behavior is LP–based branch and cut using CLP and conic CGL.

Cplex, Mosek and Ipopt can be used through conic OSI interface.

Reads problems in CBF and Mosek’s extended MPS format.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 8 / 33

DisCO Solver

A branch and cut framework to solve MISOCP. Extends COIN-OR’s
High-Performance Parallel Search (CHiPPS) framework for conic
problems.

Uses conic OSI to manipulate SOCP subproblems.

Default behavior is LP–based branch and cut using CLP and conic CGL.

Cplex, Mosek and Ipopt can be used through conic OSI interface.

Reads problems in CBF and Mosek’s extended MPS format.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 8 / 33

DisCO Solver

A branch and cut framework to solve MISOCP. Extends COIN-OR’s
High-Performance Parallel Search (CHiPPS) framework for conic
problems.

Uses conic OSI to manipulate SOCP subproblems.

Default behavior is LP–based branch and cut using CLP and conic CGL.

Cplex, Mosek and Ipopt can be used through conic OSI interface.

Reads problems in CBF and Mosek’s extended MPS format.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 8 / 33

DisCO Solver

A branch and cut framework to solve MISOCP. Extends COIN-OR’s
High-Performance Parallel Search (CHiPPS) framework for conic
problems.

Uses conic OSI to manipulate SOCP subproblems.

Default behavior is LP–based branch and cut using CLP and conic CGL.

Cplex, Mosek and Ipopt can be used through conic OSI interface.

Reads problems in CBF and Mosek’s extended MPS format.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 8 / 33

Experimental Details

Problem set contains CBLIB2014 problems, 6 Steiner Tree Problems
and 41 randomly generated problems.

Experiments are conducted in COR@L Lab, each node has 16
processors at 2 GHz and 32 GB of memory.

Memory allowed for serial runs is limited to 2GB.

Memory limit for parallel runs is 2GB per process.

Time limit is 7100 seconds.

Cplex 12.7 is used to solve SOCP problems.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 9 / 33

Experimental Details

Problem set contains CBLIB2014 problems, 6 Steiner Tree Problems
and 41 randomly generated problems.

Experiments are conducted in COR@L Lab, each node has 16
processors at 2 GHz and 32 GB of memory.

Memory allowed for serial runs is limited to 2GB.

Memory limit for parallel runs is 2GB per process.

Time limit is 7100 seconds.

Cplex 12.7 is used to solve SOCP problems.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 9 / 33

Experimental Details

Problem set contains CBLIB2014 problems, 6 Steiner Tree Problems
and 41 randomly generated problems.

Experiments are conducted in COR@L Lab, each node has 16
processors at 2 GHz and 32 GB of memory.

Memory allowed for serial runs is limited to 2GB.

Memory limit for parallel runs is 2GB per process.

Time limit is 7100 seconds.

Cplex 12.7 is used to solve SOCP problems.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 9 / 33

Experimental Details

Problem set contains CBLIB2014 problems, 6 Steiner Tree Problems
and 41 randomly generated problems.

Experiments are conducted in COR@L Lab, each node has 16
processors at 2 GHz and 32 GB of memory.

Memory allowed for serial runs is limited to 2GB.

Memory limit for parallel runs is 2GB per process.

Time limit is 7100 seconds.

Cplex 12.7 is used to solve SOCP problems.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 9 / 33

Experimental Details

Problem set contains CBLIB2014 problems, 6 Steiner Tree Problems
and 41 randomly generated problems.

Experiments are conducted in COR@L Lab, each node has 16
processors at 2 GHz and 32 GB of memory.

Memory allowed for serial runs is limited to 2GB.

Memory limit for parallel runs is 2GB per process.

Time limit is 7100 seconds.

Cplex 12.7 is used to solve SOCP problems.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 9 / 33

Experimental Details

Problem set contains CBLIB2014 problems, 6 Steiner Tree Problems
and 41 randomly generated problems.

Experiments are conducted in COR@L Lab, each node has 16
processors at 2 GHz and 32 GB of memory.

Memory allowed for serial runs is limited to 2GB.

Memory limit for parallel runs is 2GB per process.

Time limit is 7100 seconds.

Cplex 12.7 is used to solve SOCP problems.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 9 / 33

Table: SOCP-based Branch and Bound Variations Experimented

Parameters referred as
default disco-socp
strong branching disco-socp-strong
disjunctive cuts in root disco-socp-dc-all
only best disjunctive cut disco-socp-dc-best
parallel bb-socp with OpenMPI disco-socp-mpi

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 10 / 33

Table: OA Branch and Cut Variations Experimented

Parameters referred as
α← 1, β ← 0.001, γ ← 50 disco-lp
strong branching disco-lp-strong
α← 2 disco-lp-2
α← 4 disco-lp-3
β ← 0.01 disco-lp-4
β ← 0.0001 disco-lp-5
γ ← 20 disco-lp-6
γ ← 100 disco-lp-7
add all disjunctive cuts at root node disco-lp-dc-all
add only best disjunctive cut at root node disco-lp-dc-best
no MILP cuts disco-lp-nomilpcuts
parallel version with OpenMPI disco-lp-mpi

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 11 / 33

Figure: disco-socp, CPU Time, Branching Strategies

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16

CPU Time in seconds

disco-socp-pseudo
disco-socp-strong

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 12 / 33

Figure: disco-socp, Number of Nodes, Branching Strategies

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8

Number of nodes

disco-socp-pseudo
disco-socp-strong

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 13 / 33

Figure: disco-lp, CPU Time, Branching Strategies

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8

CPU Time in seconds

disco-lp
disco-lp-strong

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 14 / 33

Figure: disco-lp, Number of Nodes, Branching Strategies

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8

Number of nodes

disco-lp
disco-lp-strong

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 15 / 33

Figure: disco-lp, CPU Time, OA Cut Parameters

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16

CPU Time in seconds

disco-lp
disco-lp-2
disco-lp-3
disco-lp-4
disco-lp-5
disco-lp-6
disco-lp-7

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 16 / 33

Figure: disco-lp, Number of Nodes, OA Cut Parameters

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16

Number of nodes

disco-lp
disco-lp-2
disco-lp-3
disco-lp-4
disco-lp-5
disco-lp-6
disco-lp-7

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 17 / 33

Figure: disco-lp, CPU Time without MILP Cuts

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4

CPU Time in seconds

disco-lp
disco-lp-nomilpcuts

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 18 / 33

Figure: disco-lp, Number of Nodes without MILP Cuts

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4

Number of nodes

disco-lp
disco-lp-nomilpcuts

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 19 / 33

Figure: disco-socp, CPU Time with Disjunctive Cuts

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32

CPU Time in seconds

disco-socp-dc-all
disco-socp-dc-best

disco-socp

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 20 / 33

Figure: disco-socp, Number of Nodes with Disjunctive Cuts

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16

Number of nodes

disco-socp-dc-all
disco-socp-dc-best

disco-socp

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 21 / 33

Figure: disco-lp, CPU Time with Disjunctive Cuts

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32

CPU Time in seconds

disco-lp-dc-all
disco-lp-dc-best

disco-lp-nomilpcuts

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 22 / 33

Figure: disco-lp, Number of Nodes with Disjunctive Cuts

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32

Number of nodes

disco-lp-dc-all
disco-lp-dc-best

disco-lp-nomilpcuts

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 23 / 33

Figure: disco-socp, CPU Time, Parallel Runs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32

CPU Time in seconds

serial
15_proc
30_proc

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 24 / 33

Figure: disco-socp, Number of Nodes, Parallel Runs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8

Number of nodes

serial
15_proc
30_proc

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 25 / 33

Figure: disco-lp, CPU Time, Parallel Runs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

CPU Time in seconds

serial
15_proc
30_proc

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 26 / 33

Figure: disco-lp, Number of Nodes Processed, Parallel Runs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32

Number of nodes

serial
15_proc
30_proc

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 27 / 33

Figure: disco-lp versus disco-socp, CPU Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256

CPU Time in seconds

disco-lp
disco-socp

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 28 / 33

Figure: disco-lp versus disco-socp, Number of Nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256

Number of nodes

disco-lp
disco-socp

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 29 / 33

Figure: disco-lp versus disco-socp, Problems with Low Dimensional Cones

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

CPU Time in seconds

disco-lp
disco-socp

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 30 / 33

Figure: disco-lp versus disco-socp, CPU Time, Parallel Runs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256

CPU Time in seconds

disco-lp
disco-socp

15_proc_disco-lp-mpi
15_proc_disco-socp-mpi

30_proc_disco-lp-mpi
30_proc_disco-socp-mpi

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 31 / 33

Figure: disco-lp versus disco-socp, Problems with Low Dimensional Cones

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

CPU Time in seconds

disco-lp
disco-socp

15_proc_disco-lp-mpi
15_proc_disco-socp-mpi

30_proc_disco-lp-mpi
30_proc_disco-socp-mpi

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 32 / 33

Conclusion

Use SOCP–based subproblems for instances with large cones.

LP–based subproblems might perform better for instances with low
dimensional cones.

Use LP–based subproblems for instances that are difficult and have large
branch and bound trees.

Strong branching might help with LP-based subproblems on hard
instances.

Right cut parameters are crucial in case of LP–based subproblems.

Disjunctive cuts might help depending on the instance. They might
perform better with LP–based subproblems.

MILP cuts does not help much.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 33 / 33

Conclusion

Use SOCP–based subproblems for instances with large cones.

LP–based subproblems might perform better for instances with low
dimensional cones.

Use LP–based subproblems for instances that are difficult and have large
branch and bound trees.

Strong branching might help with LP-based subproblems on hard
instances.

Right cut parameters are crucial in case of LP–based subproblems.

Disjunctive cuts might help depending on the instance. They might
perform better with LP–based subproblems.

MILP cuts does not help much.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 33 / 33

Conclusion

Use SOCP–based subproblems for instances with large cones.

LP–based subproblems might perform better for instances with low
dimensional cones.

Use LP–based subproblems for instances that are difficult and have large
branch and bound trees.

Strong branching might help with LP-based subproblems on hard
instances.

Right cut parameters are crucial in case of LP–based subproblems.

Disjunctive cuts might help depending on the instance. They might
perform better with LP–based subproblems.

MILP cuts does not help much.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 33 / 33

Conclusion

Use SOCP–based subproblems for instances with large cones.

LP–based subproblems might perform better for instances with low
dimensional cones.

Use LP–based subproblems for instances that are difficult and have large
branch and bound trees.

Strong branching might help with LP-based subproblems on hard
instances.

Right cut parameters are crucial in case of LP–based subproblems.

Disjunctive cuts might help depending on the instance. They might
perform better with LP–based subproblems.

MILP cuts does not help much.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 33 / 33

Conclusion

Use SOCP–based subproblems for instances with large cones.

LP–based subproblems might perform better for instances with low
dimensional cones.

Use LP–based subproblems for instances that are difficult and have large
branch and bound trees.

Strong branching might help with LP-based subproblems on hard
instances.

Right cut parameters are crucial in case of LP–based subproblems.

Disjunctive cuts might help depending on the instance. They might
perform better with LP–based subproblems.

MILP cuts does not help much.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 33 / 33

Conclusion

Use SOCP–based subproblems for instances with large cones.

LP–based subproblems might perform better for instances with low
dimensional cones.

Use LP–based subproblems for instances that are difficult and have large
branch and bound trees.

Strong branching might help with LP-based subproblems on hard
instances.

Right cut parameters are crucial in case of LP–based subproblems.

Disjunctive cuts might help depending on the instance. They might
perform better with LP–based subproblems.

MILP cuts does not help much.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 33 / 33

Conclusion

Use SOCP–based subproblems for instances with large cones.

LP–based subproblems might perform better for instances with low
dimensional cones.

Use LP–based subproblems for instances that are difficult and have large
branch and bound trees.

Strong branching might help with LP-based subproblems on hard
instances.

Right cut parameters are crucial in case of LP–based subproblems.

Disjunctive cuts might help depending on the instance. They might
perform better with LP–based subproblems.

MILP cuts does not help much.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 33 / 33

Clone, Try, Contribute

https://github.com/aykutbulut
https://github.com/coin-or

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 33 / 33

References

Pietro Belotti, Julio C. Góez, Imre Pólik, Ted K. Ralphs, and Tamás Terlaky.
On families of quadratic surfaces having fixed intersections with two hyperplanes.
Discrete Applied Mathematics, 161(16–17):2778–2793, 2013.
ISSN 0166-218X.

Pietro Belotti, Julio C Góez, Imre Pólik, Ted K Ralphs, and Tamás Terlaky.
A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization.
In Numerical Analysis and Optimization, pages 1–35. Springer, 2015.

Henrik A. Friberg.
Cblib 2014: A benchmark library for conic mixed-integer and continuous optimization.
Optimization Online, 2014.
URL http://www.optimization-online.org/DB_FILE/2014/03/4301.pdf.

Julio C. Góez.
Mixed Integer Second Order Cone Optimization Disjunctive Conic Cuts: Theory and experiments.
PhD thesis, Lehigh University, Bethlehem, PA, September 2013.

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 33 / 33

http://www.optimization-online.org/DB_FILE/2014/03/4301.pdf

	Algorithms for MISOCP
	DisCO Solver
	Computational Experiments
	Conclusion

