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MISOCP Definition

We are interested in solving Mixed Integer Second Order Conic
Optimization (MISOCP) problems.

MISOCP is a generalization of Mixed Integer Linear Optimization
(MILP).

MISOCP can be formulated as follows,

min c>x

s.t. Ax = b

x ∈ L1 × · · · × Lk (MISOCP)

xi ∈ R+ i ∈ I

xj ∈ Z+ j ∈ J.
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Motivation: Evaluation of Solution Approaches for
MISOCP

Choice of branch and bound subproblem: LP vs SOCP?

What does an LP–based branch and cut for MISOCP look like?

How to balance cutting and branching for LP–based approach?

Do MILP cuts help in case of LP–based subproblems?

Do disjunctive conic cuts help?

Which branching strategy to use?
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Separating Infeasible Directions/Solutions

Figure: Separation Example
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LP–based Branch And Cut

Algorithm 1 LP–based Branch and Cut Algorithm (bb-lp)
1: Solve SOCP.
2: Relax all integrality and conic constraints to create root node LP.
3: while there are nodes to process do
4: Pick a node.
5: Solve LP, if LP solution is feasible, update bounds and go to line 3.
6: Decide whether to constrain or branch.
7: while cutting is preferred do
8: Add cuts to the LP and solve.
9: Decide whether to constrain or branch.

10: end while
11: Branch, remove current node.
12: end while
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Whether to Cut or Branch

Let x be LP subproblem solution.
If x is conic infeasible,

Generate Outer Approximation (OA) cuts for at least α iterations.
Generate OA cuts for at most γ iterations if x is integer infeasible too.
After α iterations, generate OA cuts if last improvement in the LP bound
was greater than β times difference of LP bound to current upper bound.

If x is integer infeasible, and a fixed number of nodes passed since last,
generate MILP cuts.
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DisCO Solver

A branch and cut framework to solve MISOCP. Extends COIN-OR’s
High-Performance Parallel Search (CHiPPS) framework for conic
problems.

Uses conic OSI to manipulate SOCP subproblems.

Default behavior is LP–based branch and cut using CLP and conic CGL.

Cplex, Mosek and Ipopt can be used through conic OSI interface.

Reads problems in CBF and Mosek’s extended MPS format.
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Experimental Details

Problem set contains CBLIB2014 problems, 6 Steiner Tree Problems
and 41 randomly generated problems.

Experiments are conducted in COR@L Lab, each node has 16
processors at 2 GHz and 32 GB of memory.

Memory allowed for serial runs is limited to 2GB.

Memory limit for parallel runs is 2GB per process.

Time limit is 7100 seconds.

Cplex 12.7 is used to solve SOCP problems.
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Table: SOCP-based Branch and Bound Variations Experimented

Parameters referred as
default disco-socp
strong branching disco-socp-strong
disjunctive cuts in root disco-socp-dc-all
only best disjunctive cut disco-socp-dc-best
parallel bb-socp with OpenMPI disco-socp-mpi
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Table: OA Branch and Cut Variations Experimented

Parameters referred as
α← 1, β ← 0.001, γ ← 50 disco-lp
strong branching disco-lp-strong
α← 2 disco-lp-2
α← 4 disco-lp-3
β ← 0.01 disco-lp-4
β ← 0.0001 disco-lp-5
γ ← 20 disco-lp-6
γ ← 100 disco-lp-7
add all disjunctive cuts at root node disco-lp-dc-all
add only best disjunctive cut at root node disco-lp-dc-best
no MILP cuts disco-lp-nomilpcuts
parallel version with OpenMPI disco-lp-mpi
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Figure: disco-socp, CPU Time, Branching Strategies
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Figure: disco-socp, Number of Nodes, Branching Strategies
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Figure: disco-lp, CPU Time, Branching Strategies
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Figure: disco-lp, CPU Time, OA Cut Parameters
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Figure: disco-lp, Number of Nodes, OA Cut Parameters
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Figure: disco-lp, CPU Time without MILP Cuts
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Figure: disco-lp, Number of Nodes without MILP Cuts
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Figure: disco-socp, CPU Time with Disjunctive Cuts
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Figure: disco-socp, Number of Nodes with Disjunctive Cuts
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Figure: disco-lp, CPU Time with Disjunctive Cuts
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Figure: disco-lp, Number of Nodes with Disjunctive Cuts
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Figure: disco-socp, CPU Time, Parallel Runs
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Figure: disco-lp, CPU Time, Parallel Runs
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Figure: disco-lp, Number of Nodes Processed, Parallel Runs
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Figure: disco-lp versus disco-socp, CPU Time
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Figure: disco-lp versus disco-socp, Number of Nodes
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Figure: disco-lp versus disco-socp, Problems with Low Dimensional Cones
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Figure: disco-lp versus disco-socp, CPU Time, Parallel Runs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  64  128  256

CPU Time in seconds

disco-lp
disco-socp

15_proc_disco-lp-mpi
15_proc_disco-socp-mpi

30_proc_disco-lp-mpi
30_proc_disco-socp-mpi

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 31 / 33



Figure: disco-lp versus disco-socp, Problems with Low Dimensional Cones

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  8  16  32  64

CPU Time in seconds

disco-lp
disco-socp

15_proc_disco-lp-mpi
15_proc_disco-socp-mpi

30_proc_disco-lp-mpi
30_proc_disco-socp-mpi

Bulut, Ralphs Computational Approaches to MISOCP INFORMS 2017 32 / 33



Conclusion

Use SOCP–based subproblems for instances with large cones.

LP–based subproblems might perform better for instances with low
dimensional cones.

Use LP–based subproblems for instances that are difficult and have large
branch and bound trees.

Strong branching might help with LP-based subproblems on hard
instances.

Right cut parameters are crucial in case of LP–based subproblems.

Disjunctive cuts might help depending on the instance. They might
perform better with LP–based subproblems.

MILP cuts does not help much.
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Clone, Try, Contribute

https://github.com/aykutbulut
https://github.com/coin-or
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